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Abstract

We analytically compute the apparent diffusion coefficient Dapp for an open restricted geometry, such as an extended porous

medium, for the case of a pulsed-field gradient (PFG) experiment with finite-width pulses. In the short- and long-time limits, we give

explicit, model-independent expressions that correct for the finite duration of the pulses and can be used to extract the pore surface-

to-volume (S=V ) ratio as well as the tortuosity. For all times, we compute Dapp using a well-established model form of the actual

time-dependent diffusion coefficient DðtÞ that can be obtained from an ideal narrow-pulse PFG. We compare Dapp and DðtÞ and find

that, regardless of pulse widths and geometry-dependent parameters, the two quantities deviate by less than 20%. These results are in

sharp contrast with the studies on closed geometries [J. Magn. Reson. A 117 (1995) 209], where the effects of finite gradient-pulse

widths are large. The analytical results presented here can be easily adapted for different pulse protocols and time sequences.

� 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Pulsed-field gradient (PFG) techniques have become

an indispensable part of imaging and diffusion measure-

ments using nuclear magnetic resonance (NMR) [1–4].

Under the narrow-pulse approximation, i.e., when dif-

fusion during the encoding and decoding gradient pulses

can be ignored, the measured signal gives the Fourier

transform of the conditional probability distribution of

displacements between the pulses. Geometrical restric-
tion is encoded in the dynamics and reflected in the

magnitude of the formed echo [5–9]. A quantity com-

monly extracted from a PFG measurement that is of

great usefulness for probing the structure of the confining

geometry is the time-dependent diffusion coefficient DðtÞ.
In three dimensions, it is related to the mean-square

displacement of the spin-bearing molecules by
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DðtÞ � h½xðtÞ � xð0Þ�2i
6t

: ð1Þ

In the case of an ideal pulsed-field gradient stimulated
echo (PFGSTE) experiment, with narrow gradient pul-

ses of duration d and magnitude g, spaced by a diffusion

time D (see Fig. 3), DðtÞ is obtained from the initial slope

of the attenuation exponent with respect to k2 � c2g2d2,

DðDÞ ¼ � 1

D
lim
k!0

o

oðk2Þ ln
MðtEÞ
M0

� �
; ð2Þ

where c is the gyromagnetic ratio and tE the echo for-

mation time. When the narrow-pulse approximation

breaks down, however, this procedure for computing

DðtÞ is no longer valid.

There have been a number of studies trying to un-

derstand the effects of this breakdown [8–14] as it fre-

quently cannot be avoided. First, noble gases, such as
xenon, are finding increasing use as a probe of porous

media. Since the mobility of gas molecules is high, the

effects of restricted diffusion during the encoding and

decoding periods cannot be ignored [9]. Second, in many

medical and petrophysical applications, the gradients
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Fig. 2. GPA (Gaussian phase approximation) attenuation exponent, in

units of 8p�8L2Sc
2g2d2, for the narrow-pulse PFGSTE (pulsed-field

gradient stimulated echo) as a function of the diffusion time D between

the encoding and decoding gradients. Here g is the gradient magnitude,

d the pulse width, and c the gyromagnetic ratio. LS is the characteristic

length of the system, determined by the size of the one-dimensional

box for the closed geometry and by the surface-to-volume (S=V ) ratio
for the open geometry, LS ¼ ð9

ffiffiffi
p

p
=4ÞðV =SÞ. The closed-geometry

curve is the same as in [10, Fig. 2], and the open-geometry curve is

computed using the formalism of Section 2 as applied to the PFGSTE

in Section 3.
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used are weak, either due to hardware constraints or, as
in experiments involving living tissue, by design [15,16].

Consequently, they must be applied for longer periods

of time during which diffusion may be substantial. Fi-

nally, pulse sequences used to cancel the effects of in-

ternal fields in media with strong susceptibility

contrasts, tend to be long [17–20], again enhancing the

effects of diffusion.

Previous studies of the breakdown of the narrow-
pulse approximation have been limited to the short-time

regime [8] and to isolated pores [10–13], though the

center-of-mass-propagator picture of Mitra and Hal-

perin [14] offers some qualitative general insights. The

primary focus of the present paper is diffusion in a ho-

mogeneous open geometry, such as a connected porous

medium with a well-defined long-time effective diffusion

coefficient. We draw a schematic picture of what we
mean by ‘‘open’’ and ‘‘closed’’ geometries in Fig. 1. Part

(a) is a closed geometry, such as an isolated pore or cell;

Part (b) is a highly constricted open geometry; and Part

(c) is a dilute suspension, an open geometry where re-

striction is a small perturbation. We provide analytical

results that cover all the parameter space. Using the

Gaussian phase or second cumulant approximation

(GPA) framework developed in [21], we compute the
attenuation exponent of the magnetization at echo time

tE, which is given by the mean-square average of the

phases accumulated by the diffusing spins, hu2ðtEÞi=2.
The GPA in closed geometries has been studied exten-

sively and shown to have a broad range of validity

[10,22–25]. Since the regimes of its validity in open ge-

ometries are not well established, we discuss them in

some detail in Appendix A and sketch them in Fig. 7 in
the d� D parameter space.

Before giving the details of the calculation, it is

worthwhile to contrast the gross features of the atten-

uation in closed and open geometries. In Fig. 2, we plot

the computed attenuation exponent for the PFGSTE as

a function of the diffusion length for unbounded space

(long dashes), for a one-dimensional closed pore of size

LS (short dashes), and for an open geometry (solid line)
with size fixed by its surface-to-volume (S=V ) ratio via
Fig. 1. Three possible types of geometries: (a) closed geometry such as

an isolated pore or cell; (b) open geometry with large amount of re-

striction (tortuosity T � 1); and (c) open geometry with small amount

of restriction (T � 1). Unbounded space is an open geometry with

tortuosity T ¼ 1.
ð9
ffiffiffi
p

p
=4ÞðV =SÞ ¼ LS . The encoding and decoding peri-

ods of duration d are taken short,
ffiffiffiffiffiffiffiffi
dD0

p
¼ 0:1LS , so that

the curves are close to the ideal narrow-pulse limit. The

fundamental difference between a connected open ge-

ometry and a closed pore is that at long diffusion times

the attenuation exponent grows linearly with time for
open geometries (asymptotic thin dotted line) but satu-

rates to a time-independent constant for closed geome-

tries.

At short times the diffusion process is insensitive to

the macroscopic morphology of the system and thus

cannot distinguish between closed and open geometries.

The short-time diffusion coefficient depends only on the

total pore surface-to-volume (S=V ) ratio [5],

DðtÞjshort ¼ D0 1

�
� 4

9
ffiffiffi
p

p S
ffiffiffiffiffiffiffi
D0t

p

V

�
: ð3Þ

Differentiation appears at longer times, when the

spins have had sufficient time to traverse distances of the

order of the structural length scales present.

In closed geometries, the mean-square displacement
saturates and the attenuation of the magnetization

plateaus. DðtÞ goes to zero inversely with time with

higher-order terms decaying exponentially. In a one-

dimensional pore of size LS , for example,

DðtÞjclosed !
t!1 L2

S

12t
: ð4Þ

In the limit of both long d and long D, this corresponds
to Neuman�s result [10,22], which is independent of D:

� ln
MðtEÞ
Mð0Þ

����
closed

¼ hu2ðtEÞi
2

¼ g2c2L4
Sd

60D0

: ð5Þ
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In open geometries, on the other hand, for long times
the diffusion coefficient reaches a time-independent as-

ymptotic form known as the ‘‘tortuosity limit,’’

DðtÞjopen !
t!1D0

T � D1: ð6Þ

It is reduced from the unbounded value of D0 by a

geometrical factor T , called the tortuosity, that char-

acterizes the medium. In fact, on general grounds it has

been argued [26] that the long-time expansion of DðtÞ in
an open geometry should take the model-independent

form,

DðtÞjopen !
t!1

D1 þ j1

t
þ j2

t3=2
þ � � � ; ð7Þ

where the constants j1 and j2 depend on the details of

the geometry. This expansion implies that, for long

times, the mean-square displacement of the diffusing

spins, and consequently the attenuation exponent, will
grow linearly with time.

Extracting the time-dependent diffusion coefficient

from the measured attenuation exponent becomes

complicated when pulses cannot be assumed narrow and

Eq. (2) is inapplicable. The quantity one can obtain,

however, is an apparent diffusion coefficient, Dapp, ex-

tracted from the measured signal with the use of free-

diffusion formulas for the particular pulse sequence [27].
We will find that for open geometries, Dapp converges to

the actual DðtÞ both in the long- and short-time limits,

and quite generally, does not deviate much from it

throughout the entire range of t. This is consistent with
the results of Tanner [27], who studied diffusion in a

one-dimensional periodic system with identical perme-

able barriers and found Dapp � DðtÞ for weak gradients

(where the GPA is valid). In this paper, we study a more
general porous medium and show how geometric

quantities of interest, such as the surface-to-volume ra-

tio and the tortuosity of the bounding space, can be

obtained from Dapp directly, even in the presence of fi-

nite-width pulses when the measurement of DðtÞ may

not be possible.
2. General expressions for spatially uniform gradients

We consider a system of spins diffusing in a restricted

isotropic geometry with zero surface relaxivity in a time-

dependent applied gradient gðtÞ. The more general case

of an arbitrary inhomogeneous magnetic field is con-

sidered in [21]. We further assume that gðtÞ is piecewise
constant in time, as in a variety of pulsed-NMR exper-
iments, and suppress bulk relaxation. A general pulse

shape, however, can be accommodated by Eqs. (9) and

(10). To take into account the radiofrequency (RF)

pulses, we follow the standard procedure [4] and intro-

duce an effective gradient gðtÞqðtÞ that determines the

amount of phase acquired by the spins in a given pulse
sequence. qðtÞ is the appropriate coherence pathway
[28], with qðtÞ ¼ 0 when the magnetization is aligned

along the z-axis or qðtÞ ¼ �1 when in the transverse

plane. A complete exposition of the coherence pathway

formalism in the form used in this paper can be found in

[21] or [29]. In Section 3, we write down the values of

qðtÞ for the PFGSTE.

The total phase will be zero at the echo time tE,Z tE

0

gðtÞqðtÞdt ¼ 0; qðtÞ ¼ 0;�1: ð8Þ

The total magnetization, then, within the GPA, is given

by

MðtEÞ ¼ Mð0Þ exp
�
� hu2ðtEÞi

2

�
; ð9Þ

where

hu2ðtEÞi ¼ �2c2
Z tE

0

Z t00

0

dt00 dt0gðt00Þqðt00Þgðt0Þ

� qðt0ÞDðt00 � t0Þ½t00 � t0�: ð10Þ

The DðtÞ in Eq. (10) is the time-dependent diffusion

coefficient defined in Eq. (1).

For small values of k ¼ cgd, the derivative in the ideal

PFGSTE expression Eq. (2) is equivalent to division by

k2. This corresponds to dividing by the exact free-space

attenuation exponent [2], g2c2d2D0ðD� d=3Þ, in the limit

of short d. More generally, for an arbitrary pulse se-
quence, one can define the apparent diffusion coefficient

via

DappðtEÞ �
� ln MðtEÞ=M0ð Þ

c2
R tE
0

R t00

0
dt00 dt0gðt00Þqðt00Þgðt0Þqðt0Þðt00 � t0Þ

:

ð11Þ
For unrestricted diffusion, the above expression gives

exactly D0. And for the PFGSTE sequence, it becomes

[2,27]

Dapp �
� lnðMðtEÞ=M0Þ
g2c2d2ðD� d=3Þ

: ð12Þ

This procedure is well-suited to the analysis of the effects

of restriction since, roughly speaking, it factors out the

free attenuation.

Nowwe proceed to evaluate hu2ðtEÞi. Let us denote the
times when the RF pulses are applied, or the gradient
pulses turned on and off, by ft1; t2; . . . ; tNg. We define the

last time marker tNþ1 � tE to be the echo time, and define

sk � tkþ1 � tk as the interval between two successive time

markers. See Fig. 3 for an example of our notations. We

then consider an effective gradient that is piecewise con-

stant in time, with gðtÞqðtÞ ¼ gkqk for t 2 ½tk; tkþ1�. Then
hu2ðtEÞi of Eq. (10) can be written as

hu2ðtEÞi ¼
XN
k¼1

ðgkqkÞ2Kkk þ 2
XN
k>l

ðgkqkglqlÞKkl; ð13Þ



Fig. 3. Pulsed-field gradient stimulated echo (PFGSTE) pulse sequence

with the notations used in this paper.
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where

Kkk ¼ 2skI1ð0; skÞ � 2I2ð0; skÞ; ð14Þ
and for k > l,

Kkl ¼ I2ðtl � tkþ1; tlþ1 � tkþ1Þ
� ½tl � tkþ1�I1ðtl � tkþ1; tlþ1 � tkþ1Þ
þ slI1ðtlþ1 � tkþ1; tl � tkÞþ ½tlþ1 � tk�I1ðtl � tk; tlþ1 � tkÞ
� I2ðtl � tk; tlþ1 � tkÞ: ð15Þ

Here, we defined

I1ðt0; t00Þ � �c2
Z t00

t0
dt tDðtÞ;

I2ðt0; t00Þ � �c2
Z t00

t0
dt t2DðtÞ:

ð16Þ

Note that the knowledge of I1 and I2 completely deter-

mines the attenuation of the magnetization within the

GPA.

To evaluate Eq. (16) we need a model for the time-

dependent diffusion coefficient. As discussed in [21], one

can use here the rigorously valid short and long-time
forms of DðtÞ, Eqs. (3) and (7), respectively, to analyti-

cally compute I1 and I2, thus obtaining model-indepen-

dent expressions for the short and long-time limits of the

attenuation exponent. A general formula for DðtÞ in an

arbitrary porous medium does not exist. However, one

can interpolate between Eqs. (3) and (6) using a Pad�ee-
approximant prescription [6,8]:

DðtÞ ¼ D0 1

�
� g

ffiffiffiffi
ta

p
þ tbffiffiffiffi

ta
p

þ tbþ g

�
; ð17Þ

where g ¼ ð1� 1=T Þ; a ¼ D0½ð4=9
ffiffiffi
p

p
ÞðS=V Þ�2 sets the

time scale of validity of the short-time regime; and b
determines the rate of approach to the long-time tortu-

osity limit. b can be related to the macroscopic homo-

geneity length scale of the medium, LMACRO �
ffiffiffiffiffiffiffiffiffiffiffi
D0=b

p
,

which in most physical systems will be of the order of
LS � ð9

ffiffiffi
p

p
=4ÞðV =SÞ. In a simple pack of beads, for ex-

ample, Mair et al. fits the data with LMACRO � LS=3 [9].

LMACRO � 1mm corresponds to b 	 2� 10�3 s�1 for

water at room temperature and b 	 5:7 s�1 for xenon at

1 bar pressure. We note here also that the long-time

expansion of the Pad�ee form of DðtÞ in Eq. (17) is
consistent with Eq. (7) with the associations
j1 ¼ D0g2=b and j2 ¼ �D0

ffiffiffi
a

p
g2=b2.

The Pad�ee form of DðtÞ in Eq. (17) is just an inter-

polation formula that connects the analytically deriv-

able short- and long-time limits. Two of the parameters

in it, the tortuosity T and the surface-to-volume ratio

S=V , can be extracted from the two asymptotic regimes

and, in principle, do not depend on any interpolation.

The physical interpretation of the third parameter b as
being related to LMACRO hinges on the assumption of

existence of such a single well-defined homogeneity

length scale. In complex porous media, there may be

many different length scales and b will in general

depend on all of them. In fact, the form of Eq. (17)

may not even be appropriate. However, experimentally

at least, Eq. (17) seems to adequately fit most data,

whether in random bead packs [8,9] or various types of
porous rocks [6,30,31]. Whatever the precise interpre-

tation of the parameter b, therefore, we expect that in

most connected porous media, DðtÞ will be well repre-

sented by the general form of Eq. (17). Using Eq. (17),

the I1 and I2 in Eq. (16) can then be evaluated explic-

itly, and within the GPA should yield a good predic-

tion of the attenuation exponent. The full expressions

have been derived in [21] and we repeat them in
Appendix B.
3. Application to the PFGSTE pulse sequence

We now specialize to Tanner�s stimulated-echo se-

quence [2] which we sketch in Fig. 3. The three 90� RF

pulses are applied at times t1, t4 ¼ t1 þ s, and
t5 ¼ t1 þ D, where we let s ¼ d1 þ dþ d2. The echo

forms at t8 ¼ t1 þ Dþ s. For simplicity, we ignore any

background fields and apply an external uniform gra-

dient gðtÞ ¼ g for t2 < t < t3 and t6 < t < t7 and gðtÞ ¼ 0

otherwise. The effective gradient felt by the spins will be

qðtÞgðtÞ with qðtÞ ¼ �1 for t1 < t < t4, qðtÞ ¼ 0 for

t4 < t < t5, and qðtÞ ¼ þ1 for t5 < t < t8. The appropri-

ate time partition is fs1; s2; s3; s4; s5; s6; s7g ¼ fd1; d; d2;
D� s; d1; d; d2g.

Now we evaluate the expressions for I1 and I2 from

Appendix B at the appropriate times in Eqs. (14) and

(15) and sum up according to Eq. (13) to obtain the

attenuation exponent for the sequence. The explicit form

of the general expression is rather lengthy and unillu-

minating, so we only write down its short- and long-time

limits in subsequent sections. We used the complete
general expression, however, to obtain the open-geom-

etry curve in Fig. 2, and here we use it again to compute,

via Eq. (12), the apparent diffusion coefficient Dapp for

PFGSTE. We plot it in Fig. 4 as a function of the dif-

fusion length during D for three different pulse widths.

The shortest length scale probed is limited by the width

of the pulse d. Curve A gives very nearly the correct DðtÞ



� �

Fig. 4. The apparent diffusion coefficient, Eq. (12), in an open geom-

etry with tortuosity T ¼ 5 and b ¼ a, as measured with a narrow-pulse

A and finite-width pulses B and C. As before, LS is the length scale of

the open geometry defined by its surface-to-volume ratio,

LS ¼ ð9
ffiffiffi
p

p
=4ÞðV =SÞ. The horizontal dashed line marks the long-time

tortuosity limit, and the sloping dashed line gives the narrow-pulse

short-time limit obtainable from Eq. (19) by letting d ! 0. Curves do

not start at zero because, by construction, DP d. Curve A overlaps

completely with the narrow-pulse limit. Note that the deviations of B

and C from A are quite small in the regions where D � d.
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as would be extracted from the ideal PFGSTE.

Throughout most of the accessible range of D, the curves
for pulses of finite duration, B and C, do not deviate

strongly from A, and for long D, all three curves as-

ymptote to the same limit as discussed in Section 3.2.

Short length scales cannot be probed with finite-width
pulses directly. One sometimes attempts to use Eq. (17)

to fit the short-time behavior of DðtÞ from its long-time

tail [6]. Performing such a fit with curve B, for example,

would overestimate the S=V by 	 50%. Our formalism,

assuming the appropriateness of the Pad�ee form of DðtÞ,
yields the correct fit.

3.1. Short-D limit

In the short-time limit, the correction to the un-

bounded result is proportional to the surface-to-volume

ratio (S=V ) of the confining space. The computation of

the attenuation exponent in this regime does not require

the use of the Pad�ee approximation. One can use the

asymptotically exact short-time form of DðtÞ in Eq. (3)

to evaluate the integrals in Eq. (16) as done in [21]. Since
the GPA becomes exact for short times, so does the

attenuation exponent in Eq. (18). It is valid, moreover,

for open and closed geometries alike. The same ex-

pression is obtained by taking the short-D and short-d
limit of the general Pad�ee formula computed above using

the I1 and I2 from Appendix B. We note lastly that, as

for unbounded space, the short-time attenuation expo-

nent depends only on d and D and not on the precise
positioning of the gradients between the RF pulses. We

have
� hu2i
2

���
short

¼ � 1

3
g2c2D0 d2ð3D� dÞ þ S

V
16

105
ffiffiffi
p

p

� D3 2
ffiffiffiffiffiffiffiffiffi
D0D

p	h
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D0ð�dþ DÞ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D0ðdþ DÞ

p 

þ 3dD2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D0ð�dþ DÞ

p	
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D0ðdþ DÞ

p 

þ d3 2

ffiffiffiffiffiffiffiffi
D0d

p	
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D0ð�dþ DÞ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D0ðdþ DÞ

p 

� 3d2D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D0ð�dþ DÞ

p	

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D0ðdþ DÞ

p 
i�
ð18Þ

!d
D � g2c2d2D0 D� d
3

� �

� 1� 4

9
ffiffiffi
p

p S
ffiffiffiffiffiffiffiffiffi
D0D

p

V
1þ d

3D

� �� �
: ð19Þ

Eq. (18) is valid provided g2c2d2D0D 
 1 and
ffiffiffiffiffiffiffiffiffi
D0D

p



V =S. Letting d 
 D gives the first-order correction to

the narrow-pulse limit.

3.2. Long-D limit

The long-time regime is reached when the spins have

diffused through a distance larger than the macroscopic

length scale of the medium, LMACRO �
ffiffiffiffiffiffiffiffiffiffiffi
D0=b

p
�

LS � ðV =SÞð9
ffiffiffi
p

p
=4Þ. Here, we contrast the behavior

under narrow pulses and pulses of finite duration by

considering two different limiting cases.

Case 1. Narrow pulse:
ffiffiffiffiffiffiffiffiffi
D0D

p
� LS and

ffiffiffiffiffiffiffiffi
D0d

p

 LS ,

Dapp

D1
! 1þ T

D
g2

b
1

�
� 1

3

bd
g

�

¼ 1þ T g2
L2
MACRO

D0D
1

�
� 1

3g
D0d

L2
MACRO

�
: ð20Þ

Case 2. Wide pulse:
ffiffiffiffiffiffiffiffiffi
D0D

p
�

ffiffiffiffiffiffiffiffi
D0d

p
� LS ,

Dapp

D1
! 1þ 8

3

T g2

b2Dd

ffiffiffiffiffiffiffiffi
D0d

p

LS

¼ 1þ 8T g2

3

L4
MACRO

D0DD0d

ffiffiffiffiffiffiffiffi
D0d

p

LS
; ð21Þ

where D1 ¼ D0=T as defined in Eq. (6).

In either case, although the rates of approach differ,

Dapp ! D1 reaches the same asymptotic long-D behav-

ior. Thus, regardless of whether a narrow pulse or a finite-

width pulse is used,Dapp will converge to the correct value

of the actual DðtÞ. Since the same was true in the short-D
limit,Dapp is effectively ‘‘pinned’’ to the correct DðtÞ form
for both short and long times. Quite generally, then, its

deviation from DðtÞ will tend to be small for all t. We

examine this claim inmore detail in the following Section.

Case 2 above, when both d and D are long, can, in

fact, be computed for the general form of the long-time



Fig. 6. The percent-error parameter �, Eq. (23), as a function of d=D for
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expansion of DðtÞ in Eq. (7). As discussed in [21], one
can use Eq. (7) directly in Eq. (16) to compute the first

two terms in the long-time expansion of the attenuation

exponent. This procedure yields a model-independent

long-time formula,

Dapp

D1
! 1� 8

3

j2T
D0D

ffiffiffi
d

p : ð22Þ

With the identification j2 ¼ �D0

ffiffiffi
a

p
g2=b2 as before

[Eq. (17) and discussion below], Eq. (22) reduces to Eq.

(21). To emphasize, Eq. (22) does not depend on the
Pad�ee interpolation formula in Eq. (17) but, within the

GPA, is completely general.

the four values of tortuosity T used in Fig. 5. Panels a, b, c and d

correspond to 1=T ¼ 0:2, 0.3, 0.5, and 0.8, respectively. In each panel,

the error is shown for three different values of the diffusion length:

solid line, with
ffiffiffiffiffiffiffiffiffi
D0D

p
=LS ¼ 0:2, represents the short-time regime;

short-dashed line, with
ffiffiffiffiffiffiffiffiffi
D0D

p
=LS ¼ 4, represents the long-time regime;

and long-dashed line, with
ffiffiffiffiffiffiffiffiffi
D0D

p
=LS ¼ 1, belongs to the intermediate

regime.
4. Error due to the narrow-pulse approximation

In this section, we quantify the error incurred in the

determination of DðtÞ due to the breakdown of the
narrow-pulse approximation. We define a percent-error

parameter

�ðD; dÞ � DappðD; dÞ � DappðD; d ¼ 0Þ
DappðD; dÞ

� 100%; ð23Þ

which measures the deviation of DappðD; dÞ from the

narrow-pulse limit, DappðD; d ¼ 0Þ ¼ DðdÞ. Recall that

when d ¼ D, the pulse has the longest possible duration,
i.e., the gradient is on throughout the entire experiment.

The corresponding deviation from the narrow-pulse

behavior will be the strongest and thus �ðD; d ¼ DÞ will
give the ‘‘worst case’’ error. We plot �ðD;DÞ in Fig. 5 as a

function of D for the b parameter equal to a and four
different values of tortuosity, from top to bottom,

T �1 ¼ 0:2, 0.3, 0.5, 0.8. For a very low tortuosity sys-

tem, curve d in the figure, which could represent a sus-

pension, the deviation due to the finite pulse width is
Fig. 5. The ‘‘worst case’’ percent error in estimated diffusion coeffi-

cient, �ðD; d ¼ DÞ, as defined in Eq. (23), plotted as a function of the

diffusion length during D. Curves a, b, c and d correspond to

1=T ¼ 0:2, 0.3, 0.5, and 0.8 respectively. Parameter b ¼ a for all

curves.
minimal, less than 2% for the entire range of D. For a

random pack of mono-sized beads, T �1 is between 0.5

and 0.3. And for a typical reservoir rock, T �1 is on the

order of 0.2. Even for these high tortuosities, the error

parameter remains less than 20%. We choose a small

value of b to exaggerate the difference between the long-
D limit cases 1 and 2 in Section 3.2. For larger values of

b, DðtÞ approaches the tortuosity limit faster and the

relative error for long D�s decreases.
In Fig. 6, we plot the error parameter � as a function

of d=D for three different values of D. Tortuosities used
in panels a, b, c, and d correspond to the curves with the

same label in Fig. 5. The solid line in all four panels

corresponds to the short-time regime, withffiffiffiffiffiffiffiffiffi
D0D

p
¼ 0:2LS ; the short-dashed line,

ffiffiffiffiffiffiffiffiffi
D0D

p
¼ 4LS , to

the long-time regime; and the long-dashed line,ffiffiffiffiffiffiffiffiffi
D0D

p
¼ LS , to the intermediate regime. As noted pre-

viously, for small tortuosities, panels c and d, the error

remains small for all pulse widths and all values of D.
We also observe that, when d 
 D the error is 6 2%,

irrespective of tortuosity and of absolute durations of

the gradient pulse d and the diffusion time D.
5. Conclusions

We have investigated the effects of finite-width

gradient pulses on the PFGSTE measurement of the

time-dependent diffusion coefficient DðtÞ in an open

geometry, such as an extended porous medium. In the
short- and long-time limits we have derived explicit

model-independent formulas for the apparent diffusion

coefficient Dapp. In these asymptotic regimes, Dapp

approaches the actual DðtÞ measured using the ideal

narrow-pulse PFGSTE. To study intermediate times, we

assumed a well-established Pad�ee-interpolated form of
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DðtÞ and used it to compute Dapp. We found that, fixed
by the asymptotic behavior for both short and long

times, Dapp does not deviate much from DðtÞ for all

times. More important, however, we showed that the

geometric quantities of interest contained in DðtÞ,
the pore surface-to-volume ratio and the tortuosity of

the medium, can be extracted directly from Dapp even

when the narrow-pulse approximation breaks down and

the actual DðtÞ cannot be measured.
Fig. 7. Thatched regions mark the regimes of validity of the GPA in a

connected porous medium for the PFGSTE with d and D as labeled in

Fig. 3. By definition d < D, and thus the accessible phase space is re-
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stricted to the lower triangle. tM is the time to diffuse across the in-

homogeneity length scale of the medium; and t�, defined via

cgt�ðD0t�Þ1=2 ¼ p, marks the time scale at which the phase acquired

while the pulse is on becomes significant. The curved line, given by

cgdðD0DÞ1=2 ¼ p, bounds the small-u regime (lower left-hand corner),

where the GPA holds since the higher moments of the phase distri-

bution are much smaller than the variance. As discussed in the text, the

GPA will also hold when both d;D > tM (upper right-hand corner) and

when D > tM and d < t� (lower right-hand corner). Note that for a

sufficiently weak gradient, t� may be in fact longer than tM , shading in

the entire lower triangle and making the GPA valid for all times.
Appendix A. Gaussian phase approximation in homoge-

neous porous media in a uniform gradient

As indicated in Fig. 7, the GPA in a porous medium

will be valid in three different regimes: First, when the

phases accumulated by the spins throughout the entire
experiment are small (lower left-hand corner in the

Figure); second, when both D and d are long, regardless

of the phase acquired (upper right-hand corner); and

third, when D is long and the phases accumulated during

just the encoding (or decoding) period are small (lower

right-hand corner). In fact, these three regimes will

merge for a sufficiently weak gradient (long t� in the

figure), making the GPA valid for all D and d. We now
discuss each regime in turn.

When the distribution of spin phases at echo time is

narrowly peaked around hui ¼ 0, i.e. the spins have

acquired only very little phase, the GPA will be a good

approximation simply because the higher moments are

much smaller than the variance, 1 � hu2i � hu3i � � � �
This situation will occur for sufficiently short times

(both d and D), regardless of gradient strength, but also
for any D and d given sufficiently weak gradient. Both

cases can be rigorously treated via a direct perturbative

expansion of the Torrey–Bloch equation in the field in-

homogeneity, in a Dyson-like series, as done for instance

in [21,25]. This regime is not limited just to porous

media, but will obtain in arbitrary geometries, whether

open or closed. We indicate it in Fig. 7 by the shaded

region in the lower-left corner, with t� fixed by the
strength of the gradient, as defined in the caption.

To discuss the other two regimes, we specialize to

a homogeneous porous medium, characterized by a

macroscopic homogeneity length scale LMACRO and the
typical time to traverse it tM . Following the usual ap-

proach [4,32], we consider a random walker taking a

step every time interval s and in the ith step moving

parallel to the gradient g from xi to xiþ1 ¼ xi þ dxi. (We

can ignore motion in the plane transverse to the direc-

tion of the gradient.) dxi are drawn from a symmetric
distribution of step sizes P ðdxÞ, with zero mean and a

finite second moment r. P ðdxÞ reflects the fact that spins
near the walls take shorter steps in time s than the spins

in the bulk; in our framework, PðdxÞ is the only way

through which restriction bears on the motion of the

molecules. This picture will be valid provided that any

region of size LMACRO has, as far as diffusion is con-

cerned, the same statistical properties. This is what we
mean by a homogeneous porous medium. More specifi-

cally, we make the following three assumptions about

the system under consideration:

1. hdxidxiþN i ¼ 0 for Ns > tM , i.e., the steps taken by a

spin become uncorrelated after it has traversed

LMACRO.

2. For Ns > tM , the distribution of the spin�s total dis-

placement,
PN

i¼1 dxi, becomes independent of where
it started and approaches a Gaussian with an effective

diffusion coefficient D1.
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3. The gradient is sufficiently weak so that the spins do
not dephase much during tM ; if the gradient is strong,
we enter the ‘‘localization regime,’’ and the GPA

breaks down [24,34,33].

The first two conditions characterize the medium

(irrespective of the magnetic field), and the third one

pertains to the interaction of the spins with the applied

gradient.

We consider the PFGSTE from Fig. 3, with d ¼ ns
and D ¼ ðp þ nÞs. The phase acquired by a spin along its

trajectory is given by

u¼ cgs
Xn

j¼1

xj � cgs
Xn

k¼1

xnþpþk

¼ cgs
Xn

j¼1

ðxj � xnþ1Þ� cgs
Xn

k¼1

ðxnþpþk � xnþpÞ

� cgsnðxnþp � xnþ1Þ

¼ �cgs
Xn

j¼1

jdxj

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
uenc

�cgs
Xn�1

j¼0

ðn� jÞdxnþpþj

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
udec

�cgsn
Xp�1

j¼1

dxnþj

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
ustore

:

ðA:1Þ
Here uenc and udec are the phases acquired during the

encoding and decoding periods, respectively, and ustore is

due to translation during the storage period. For free

diffusion, uenc, udec, and ustore are uncorrelated, and each

independently has a Gaussian distribution with zero

mean. Consequently, the distribution of u will be

Gaussian as well.
When ps � tM , i.e., D is long, by our assumptions

about the homogeneous porousmedium, againuenc,udec,

and ustore become uncorrelated. The distribution of ustore

will still be Gaussian, but distributions of uenc and udec in

general neednot be, andneither does the distribution ofu.
If, however, ns � tM , i.e., d is long aswell, then conditions
(1) and (2) above imply that each spin during d will have

mapped out the entire step-size distribution P ðdxÞ.We can
then reshuffle all the terms in the expressions for uenc and

udec in Eq. (A.1), effectively making all the dxj into inde-

pendent identically distributed variables. Following [32],

one can then show that the Central Limit Theorem will

apply to each sum, proving that the distributions of uenc

and udec will each tend to a Gaussian, and thus so will the

distribution of u.
Finally, when D > tM and uenc and udec are small

because cgdðD0dÞ1=2 
 1, again the distributions of

ustore, uenc and udec will be each approximately Gaussian

with zero mean. Thus, the distribution of u will be near-

Gaussian as well. As is apparent from Eq. (2), in the

measurement of diffusivities, one is primarily interested

in the limit of small k ¼ cgd; this is true even when the

narrow-pulse approximation is inapplicable. The GPA

in this case will be valid for short D and for long D and
will provide an interpolating formula in the intermediate
range. In fact, if the gradient is sufficiently weak so that
cgdðD0DÞ1=2 
 1, then the GPA will be a good ap-

proximation for the whole range of D and d. A phase

diagram of all three regimes is sketched in Fig. 7.
Appendix B. Explicit formulas for I1 and I2 in Eq. (16)

Performing the integrals in Eq. (16) for the Pad�ee
model of DðtÞ in Eq. (17), one obtains

I1ðt0; t00Þ
c2

¼
t2 � 1þ g
� 

2
þ 2

ffiffiffiffi
ta

p
g2

b2
� tg2

b

þ
n
2

ffiffiffi
a

p
g2ða� 3bgÞ arctan

	
ð

ffiffiffi
a

p
þ 2

ffiffi
t

p
b


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4bg� a

p	 
. 
o� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4bg� a

p
b3

n o

þ g2ð�aþ bgÞ logð
ffiffiffiffi
ta

p
þ tbþ gÞ

b3

����
t00

t0
;

I2ðt0; t00Þ
c2

¼
t3 � 1þ g
� 

3
þ 2t

3
2

ffiffiffi
a

p
g2

3b2
� t2g2

2b

þ
2

ffiffiffiffi
ta

p
g2 a� 2bg
� 
b4

þ
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þ
n
2

ffiffiffi
a

p
g2 a2
�

� 5abgþ 5b2g2
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	 ffiffiffi

a
p�

þ 2
ffiffi
t

p
b
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4bg� a
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. 
o

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4bg� a
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�
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logð
ffiffiffiffi
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p
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;

ðB:1Þ

where the antiderivative in t is to be evaluated at the

endpoints t0 and t00 according to the appropriate time

partition in Eqs. (13)–(15).
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